Richest people in the world
Introduction
The presentation contains data from kaggle , it has data for people recorded as billionaires as of August ,2023.
Setup
- read in data and load libraries
library(tidyverse)
library(tvthemes)
library(ggthemes)
library(scales)
new_data <- readxl::read_xlsx("Billionaires.xlsx")
data validation
names(new_data)
#> [1] "Rank" "Name" "Net Worth"
#> [4] "Change" "Age" "Source"
#> [7] "Country/Territory"
- rank : ranking of the billionaire in the world
- Name : name of billionaire
- net worth : measure of his/her total assets
- Country/Territory : country based
- Source : Source of income
- Age : age of billionaire
sapply(new_data[1,],class)
#> Rank Name Net Worth Change
#> "numeric" "character" "character" "character"
#> Age Source Country/Territory
#> "numeric" "character" "character"
data cleaning
- we need net worth to be numeric so we will remove the characters
(new_data<-new_data |>
mutate(net_worth= readr::parse_number(`Net Worth`)) |>
relocate(net_worth,`Net Worth`)) # removes character strings from the data
#> # A tibble: 500 x 8
#> net_worth `Net Worth` Rank Name Change Age Source `Country/Territory`
#> <dbl> <chr> <dbl> <chr> <chr> <dbl> <chr> <chr>
#> 1 232. $232.2 B 1 Bernard ~ $0M ~ 74 LVMH France
#> 2 185. $184.7 B 2 Elon Musk $0M ~ 51 Tesla~ United States
#> 3 139. $139.1 B 3 Jeff Bez~ $0M ~ 59 Amazon United States
#> 4 128. $127.8 B 4 Larry El~ $0M ~ 78 Oracle United States
#> 5 116. $116.3 B 5 Warren B~ $0M ~ 92 Berks~ United States
#> 6 114. $114.3 B 6 Bill Gat~ $0M ~ 67 Micro~ United States
#> 7 104. $104.2 B 7 Larry Pa~ $0M ~ 50 Google United States
#> 8 99.1 $99.1 B 8 Sergey B~ $0M ~ 49 Google United States
#> 9 98.4 $98.4 B 9 Steve Ba~ $0M ~ 67 Micro~ United States
#> 10 97.3 $97.3 B 10 Carlos S~ $0M ~ 83 Telec~ Mexico
#> # i 490 more rows
- nice , we see that we removed the
dollar
andB
characters.
Data Exploration
- what is the distribution of wealth?
library(statip)
min_val <- min(new_data$net_worth)
max_val <- max(new_data$net_worth)
mean_val <- mean(new_data$net_worth)
med_val <- median(new_data$net_worth)
mod_val <- mfv(new_data$net_worth)
# Print the stats
glue::glue(
'Minimum: {format(round(min_val, 2), nsmall = 2)}
Mean: {format(round(mean_val, 2), nsmall = 2)}
Median: {format(round(med_val, 2), nsmall = 2)}
Mode: {format(round(mod_val, 2), nsmall = 2)}
Maximum: {format(round(max_val, 2), nsmall = 2)}'
)
#> Minimum: 5.40
#> Mean: 15.19
#> Median: 8.30
#> Mode: 6.20
#> Maximum: 232.20
#> Minimum: 5.40
#> Mean: 15.19
#> Median: 8.30
#> Mode: 7.00
#> Maximum: 232.20
new_data |>
ggplot() +
geom_histogram(aes(x = net_worth),
fill = "firebrick", alpha = 0.66) +
labs(title = "Distribition of wealth") +
theme(plot.title = element_text(hjust = 0.5, size = 14),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank())+
ggthemes::scale_fill_tableau()+
tvthemes::theme_theLastAirbender(title.font="Slayer",text.font = "Slayer")+
geom_vline(xintercept = min_val, color = 'gray33', linetype = "dashed", size = 1.3)+
geom_vline(xintercept = mean_val, color = 'cyan', linetype = "dashed", size = 1.3)+
geom_vline(xintercept = med_val, color = 'red', linetype = "dashed", size = 1.3 )+
geom_vline(xintercept = mod_val, color = 'yellow', linetype = "dashed", size = 1.3 )+
geom_vline(xintercept = max_val, color = 'gray33', linetype = "dashed", size = 1.3 )+
labs(x="Net Worth")
- the richest person has around
$232B
Whereas most guys are around$7B
(MODE).
new_data %>%
ggplot(aes(x=1, y=net_worth)) +
geom_boxplot() +
scale_fill_avatar()+
theme_avatar()+
labs(y="Net Worth")
distribution of age
min_val <- min(new_data$Age,na.rm=TRUE)
max_val <- max(new_data$Age,na.rm=TRUE)
mean_val <- mean(new_data$Age,na.rm=TRUE)
med_val <- median(new_data$Age,na.rm=TRUE)
mod_val <- mfv(new_data$Age,na.rm=TRUE)
# Print the stats
glue::glue(
'Minimum: {format(round(min_val, 2), nsmall = 2)}
Mean: {format(round(mean_val, 2), nsmall = 2)}
Median: {format(round(med_val, 2), nsmall = 2)}
Mode: {format(round(mod_val, 2), nsmall = 2)}
Maximum: {format(round(max_val, 2), nsmall = 2)}'
)
#> Minimum: 31.00
#> Mean: 67.69
#> Median: 68.00
#> Mode: 59.00
#> Maximum: 99.00
new_data |>
ggplot() +
geom_histogram(aes(x = Age),
fill = "firebrick", alpha = 0.66) +
labs(title = "Distrubition of Age") +
theme(plot.title = element_text(hjust = 0.5, size = 14),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank())+
ggthemes::scale_fill_tableau()+
ggthemes::theme_pander()+
geom_vline(xintercept = min_val, color = 'blue', linetype = "dashed", size = 1.3)+
geom_vline(xintercept = mean_val, color = 'cyan', linetype = "dashed", size = 1.3)+
geom_vline(xintercept = mod_val, color = 'yellow', linetype = "dashed", size = 1.3 )+
geom_vline(xintercept = max_val, color = 'gray33', linetype = "dashed", size = 1.3 )+
annotate("text",x=min_val,y=20,label="min")+
annotate("text",x=max_val,y=20,label="max")+
annotate("text",x=mean_val,y=20,label="Mean")+
annotate("text",x=mod_val,y=20,label="mode")
- the youngest billionaire is
31 years
of age - the oldest is close to a
100
Who are the top 10 richest?
plot_data<-new_data |>
arrange(desc(net_worth)) |>
head(n=10)
ggplot(data=plot_data,
aes(x=reorder(Name,-desc(net_worth)), y= net_worth,
fill=Source, label=paste0(net_worth,"B"))) +
geom_bar(stat = "identity", colour="black") +
coord_flip() +
labs(x=" ", y="Billion($US)", fill=" ",caption="Source:Forbes,Bongani Ncube") +
theme_minimal() +
ggthemes::scale_fill_tableau() +
scale_y_continuous(label=dollar_format()) +
geom_label(show_guide = F, aes(y=10))
- from the top 10 ,2 are from Google
which country has the most richest people
plot_data<-new_data |>
arrange(desc(net_worth)) |>
head(n=10)
ggplot(data=plot_data,
aes(x=reorder(Name,-desc(net_worth)), y= net_worth,
fill=`Country/Territory`, label=paste0(net_worth,"B"))) +
geom_bar(stat = "identity", colour="black") +
coord_flip() +
labs(x=" ", y="Billion($US)", fill=" ",caption="Source:Forbes,Bongani Ncube") +
theme_minimal() +
ggthemes::scale_fill_tableau() +
scale_y_continuous(label=dollar_format()) +
geom_label(show_guide = F, aes(y=10))
- the majority of the richest people are from the United States of America
is there a relationship between age and wet worth?
- not really!
what are the top 10 sources of wealth for the richest
new_data |>
group_by(Source) |>
summarise(Average=mean(net_worth,na.rm=TRUE)) |>
arrange(desc(Average)) |>
head(10) |>
mutate(Source=fct_reorder(Source, Average)) |>
ggplot(aes(Source, Average)) +
geom_col(aes(color=Source)) +
scale_color_tableau() +
theme_avatar()+
labs(x="Source",
y="Average net worth",
title="Top 10 billionaire sources") +
coord_flip() +
geom_text(aes(label=paste0(round(Average), "B"), hjust=1), col="blue")
- still the technology industry seems to the most dominant and most fruitful
which age groups have the most number of billionaires
out_new<-new_data |>
mutate(age_group = cut(Age,breaks = c(30,40,50,60,70,80,90,100),
labels = c("31 to 40","41 to 50","51 to 60",
"61 to 70","71 to 80","81 to 90",
"91 to 100")),
age_group = if_else(is.na(age_group),"not specify",age_group))
table(out_new$age_group)
#>
#> 31 to 40 41 to 50 51 to 60 61 to 70 71 to 80 81 to 90
#> 13 33 116 114 128 65
#> 91 to 100 not specify
#> 24 7
- i will visualize these results
plot_data<- out_new |>
group_by(age_group) |>
summarise(n=n())
ggplot(data=plot_data,
aes(x=reorder(age_group,-desc(n)), y= n,
fill=age_group, label=paste0(n,"people"))) +
geom_bar(stat = "identity", colour="black") +
coord_flip() +
labs(x="Age group", y="number of people", fill=" ") +
theme_minimal() +
ggthemes::scale_fill_tableau() +
geom_label(show_guide = F, aes(y=10))
- majority of the billionaires are in the 51 to 80 age category !
which age groups have the highest average net worth
plot_data<- out_new |>
group_by(age_group) |>
summarise(Average=round(mean(net_worth,na.rm=T),2))
ggplot(data=plot_data,
aes(x=reorder(age_group,-desc(Average)), y= Average,
fill=age_group, label=paste0(Average,"B$"))) +
geom_bar(stat = "identity", colour="black") +
coord_flip() +
labs(x="Age group", y="Mean Net worth", fill=" ") +
theme_minimal() +
scale_fill_brewer(palette = "YlOrBr",direction = -1) +
geom_label(show_guide = F, aes(y=1))